暂无商品咨询信息 [发表商品咨询]
"《强化学习基础、原理与应用》循序渐进地讲解了使用Python语言实现强化学习的核心算法开发的知识,内容涵盖了数据处理、算法、大模型等知识,并通过具体实例的实现过程演练了各个知识点的使用方法和使用流程。《强化学习基础、原理与应用》共分为17章,主要内容包括强化学习基础、马尔可夫决策过程、蒙特卡洛方法、Q-learning与贝尔曼方程、时序差分学习和SARSA算法、DQN算法、DDQN算法、竞争DQN算法、REINFORCE算法、Actor-Critic算法、PPO算法、TRPO算法、连续动作空间的强化学习、值分布式算法、基于模型的强化学习、多智能体强化学习实战:Predator-Prey 游戏及自动驾驶系统。本书内容简洁而不失技术深度,以极简的文字介绍了复杂的案例,易于阅读和理解。
《强化学习基础、原理与应用》适用于已经了解Python语言基础语法的读者,想进一步学习强化学习、机器学习、深度学习及相关技术的读者,还可作为大专院校相关专业的师生用书和培训机构的教材使用。
"
基本信息 | |
---|---|
出版社 | 清华大学出版社 |
ISBN | 9787302685913 |
条码 | 9787302685913 |
编者 | 张百珂 著 |
译者 | -- |
出版年月 | 2025-05-01 00:00:00.0 |
开本 | 其他 |
装帧 | 平装 |
页数 | 0 |
字数 | 615 |
版次 | 1 |
印次 | 1 |
纸张 |
暂无商品评论信息 [发表商品评论]
暂无商品咨询信息 [发表商品咨询]