暂无商品咨询信息 [发表商品咨询]
本书是在《模式识别与人工智能(基于MATLAB)》的基础上写作而成,为了适应模式识别算法的新发展、满足各层次读者的学习需求,在原有基础上增加了大量新内容,包括细化各章的内容和增加三种新算法。本书广泛涉及统计学、模糊控制、神经网络、人工智能等学科的思想和理论,将模式识别与人工智能理论和实际应用相结合,针对具体案例进行算法设计和分析,并运用MATLAB程序实现。全书共分为12章,内容包括模式识别概述、贝叶斯分类器设计、判别函数分类器设计、聚类分析、模糊聚类分析、神经网络聚类设计、模拟退火算法聚类设计、遗传算法聚类设计、蚁群算法聚类设计、粒子群算法聚类设计、免疫算法、禁忌搜索算法。覆盖了各种常用的模式识别技术。
本书可作为高等院校自动化、计算机、电子信息类等专业研究生和高年级本科生的教材,也可作为各行各业学习模式识别和机器学习的工程技术人员的参考用书。
第1章模式识别概述
1.1模式识别的基本概念
1.1.1模式的描述方法
1.1.2模式识别系统
1.2模式识别的基本方法
1.3模式识别的应用
习题
第2章贝叶斯分类器设计
2.1贝叶斯决策及贝叶斯公式
2.1.1贝叶斯决策简介
2.1.2贝叶斯公式
2.2基于最小错误率的贝叶斯决策
2.2.1基于最小错误率的贝叶斯决策理论
2.2.2最小错误率贝叶斯分类的计算过程
2.2.3最小错误率贝叶斯分类的MATLAB实现
2.2.4结论
2.3最小风险贝叶斯决策
……
基本信息 | |
---|---|
出版社 | 清华大学出版社 |
ISBN | 9787302660873 |
条码 | 9787302660873 |
编者 | 徐宏伟 等 编 |
译者 | -- |
出版年月 | 2024-06-01 00:00:00.0 |
开本 | 16开 |
装帧 | 平装 |
页数 | 452 |
字数 | 687000 |
版次 | 2 |
印次 | 1 |
纸张 | 一般胶版纸 |
暂无商品评论信息 [发表商品评论]
暂无商品咨询信息 [发表商品咨询]